
International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Mechanism for Enhancing the Overall
Performance of Multicore Processors

Pankaj Rakheja , Charu Rana, Mandeep Singh Naru la

Abstract— Multicore architectures are focused on improving the performance of the processor however their performance depends on the

thread level parallelism of the application program which is diff icult to extract and the design and production of multicore architectures is

through a unreliable fabrication technology which imposes signif icant barriers to lifelong reliable operation of chip as they are vulnerable to

defects and disturbances. In this paper we are proposing a mechanism to enhance overall performance of the multicore processors by

adopting multiple cache cores and check cores w ith improvement in software managed L1 cache of computation core and algorithm

implemented there to access right cache core to reduce cache miss and memory access frequency and to isolate it at right instant to

prevent degradation in performance in case of L2 cache miss in cache core. We have designed a mechanism which will try to eliminate the

defects in redundant as well as non redundant logic structures in the core for enhancing its performance and eff iciency. We are stressing

on thread scheduling, thread swapping and core salvaging at micro architectural level that is at the basic gate levels in the core which

enhance overall performance and eff iciency of the processor which can be aided by Intel quickpath interconnect technology and frequency

scheduling that can reduce power consumption, speed up as well as optimize the core to core communication.

Index Terms— Cache, checker, Thread

—————————— ——————————

1 INTRODUCTION

multi-core processor is an integrated circuit (IC) in which

we have two or more processors for enhancing the perfor-

mance, reducing power consumption and having more eff i-

cient simultaneous processing of multiple tasks. The composition

and balance of the cores in the mult i-core architecture shows

great variety. Some arch itecture employs only one core Design

repeated consistently which are known to have homogeneous

cores, while others use a mixture of different cores, each opt i-

mized fo r a d ifferent role they are known to have heterogeneous

cores. The general trend in processor development has moved

from dual-, tri-, quad-, hexa-, octo-core chips to ones with tens or

even hundreds of cores. This has been made possible through

advancement in semiconductor technology and it is expected that

number o f cores will increase. These advances have sustained the

validity of Moore’s law for several decades both in device count

and performance.

The thread level parallelis m can be executed efficiently in mult i-

core processors however this technique needs more parallelism in

programs with increase in number of cores. If we are unable to

exploit the thread level parallelis m then performance gain will

deteriorate.

In today’s scenario cost effective dependability for general pu r-

pose computing is demanded unlike before where h igh dependa-

bility/reliability was necessary for few applications and systems

only. Major challenge to this is the unreliable technologies em-

ployed for manufacturing mult icore processors and memories.

Some effect ive hardware and software solutions will have to be

developed for increasing dependability on mult icore chips and

computing systems which are built v ia unreliable techniques.

In this paper we are proposing a mechanism considering both

these aspects of the scenario that is with extracting and exp loit ing

thread level parallelism in mult icore architecture through thread

scheduling and thread swapping algorithms, we are compensating

various flaws which may creep in due to unreliab le techniques

employed for developing these structures by adopting core sal-

vaging and faulty component isolation at micro architectural lev-

el.

2 OVERVIW

A. Enhancing performance through thread level parallelism

By employing parallelis m in a given program mult icore processor

can be executed efficiently. So we have to extract thread level

parallelism in program which is quite difficult but mandatory to

have good performance gain. For that we can use idle excess

cores on the chip. Yosuke MORI and ken ji KENSE have pro-

posed a cache core mechanism[1] where the excess core behaves

like an L2 data cache managed through a software program. They

have utilized the fact that the communicat ion overheads in chip

multiprocessor between on chip cores are smaller than between

core and off chip memory. And global memory access frequency

will also reduce. Here if the program has to access the data in the

global memory it first accesses the L1 cache. If L1 cache miss

occurs then it accesses the L2 cache o f the cache core. They have

used one excess core as cache core we can opt for mult iple cache

cores which will be accessed based on the instruction or applica-

tion program running in the main computation core to improve

the hit ratio o f the L2 cache in cache core. And we need to design

a mechanis m that cache core is isolated at the right time to im-

prove degradation of performance by the L2 cache miss. Figure 1

below shows communication amongst computation core, cache

A

————————————————

 Pankaj Rakheja is Assistant Professr in Institute of technology and Manage-
ment,Gurgaon,India,. E-mail: pankajrakheja@itmindia.edu

 Charu Rana is Assistant Professr in Institute of technology and Manage-
ment,Gurgaon,India,. E-mail: charurana@itmindia.edu

 Mandeep singh Narula is Assistant Professr in Institute of technology and
Management,Gurgaon,India,. E-mail: msnarula@itmindia.edu

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

core and global memory.

Moreover we need to make an improvement in the L1 cache e m-

ployed at the computation core by managing it through an im-

proved software code. For enabling all this we will use virtual

hardware and prefetcher code.

Figure 1. Cache core architecture

B. Compensating flaws due to unreliable techniques

With advancement in semiconductor technology number of cores

on chip has increased and performance has improved too. But

fabrication technologies adopted are not that reliable because of

which some errors or defects creep in the system. The most im-

portant sources of unreliable hardware operation can lead to sys-

tem failure are process variability that may lead to heterogeneous

operation of identical components, transient errors in submicron

circuits and ageing effects due to extreme operating conditions.

To compensate these we can use online error detection, recovery

and repair schemes that can guarantee low cost dependability. For

error detection we may employ these approaches redundant ex-

ecution, periodic built-in self test, dynamic verification and ano-

maly detection techniques. Where in redundant execution two

independent threads execute copies of the same program and re-

sults are compared; in periodic built-in test perform non coherent

error detection by executing periodic self tests; in dynamic verif i-

cation we employ dedicated hardware checkers to verify valid ity

of specific invariants and these are carried out at run time and in

anomaly detection we monitor anomalous behavior or symptom

of faults.

For error recovery and repair we can opt for two basic recovery

techniques: Forward error recovery (does not require roll back to

previous correct state) and backward error recovery (requires roll

back to previous correct state). The redundant and non essential

components can be disabled to improve yield and performance.

Repair techniques rely on the coordination of the fault diagnosis

and isolation at different levels i.e circuit or architectural level.

Software anomaly treatment method [2] proposed by Pradeep

ramachandran, Siva kumar sastry hari, sarita V. adve is a compre-

hensive solution to detect, diagnos and recover from variety of

hardware faults by observing anomalous behavior of system re-

quiring fault detection, fault diagnosis and fault recovery compo-

nents.

Dynamic verification of cores and memory system proposed by

Daniel J.Sorin, Albert meixner is to check the certain system

wide invariants rather checking specific components. It is inde-

pendent of implementation and can detect errors due to soft and

hard faults.

Accidental heterogeneity can be dealt by core salvaging proposed

by Arjit Biswas that allows faulty core to continue operation. It

avoids usage of faulty part of the core rather than disabling whole

core.

Here in this paper we will concentrate more on non redundant

logic employed in many redundant structures like multientry a r-

rays made from decoders, buffers along with interconnects. We

will also lay stress on improving thread scheduling and thread

swapping algorithms which can be employed in multicore pro-

cessors to enhance their performance.

C. Per-Core Frequency Scheduling

Multicore architectures offer a potential opportunity for energy

conservation by allowing cores to operate at lower frequencies.

Existing analytical models for power consumption of multicores

assume that all cores operate at the same frequency where off-

chip voltage regulator used to set all sibling cores to the same

voltage level [3]. For off-chip regulators, cores on the same chip

must operate at the same frequency and in case of mult iple chips,

cores on different chips may operate at different frequencies, [4].

With the help of Turbo Boost [5] technology, better performance

can be achieved by boosting all cores to a higher frequency, only

when the processor is operating below rated power, temperature,

and current specification limits. Studies have shown that signifi-

cant energy can be achieved by controlling each core voltage.

Recent advances leads to on-chip mult icore voltage regulator

(MCVR) which can accept an input voltage and scale it down to a

range of voltages to cut power according to CPU demands. [6]

A fine grained model developed [7] after exp loiting these tech-

nologies for energy efficient computations and management of

resources. An energy aware resource management model is uti-

lized in this paper to reduce the power consumption by multi

cores operating at different frequencies and to provide a mechan-

ism for creat ing schedule of resource usage and frequencies at

which processor cores should execute to complete computation.

D. Intel QuickPath Interconnect Technology

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Figure 2. Intel quickpath interconnect

Intel Quickpath interconnect technology [8] shown in figure 2

provides high speed, point to point connections between micro-

processors and external memory, and between microprocessors

and the I/O hub. It is implemented in Intel’s latest generation

microarch itecture along with integrated memory controllers and

distributed shared memory architecture.

In this technology each processor has its own dedicated memory

which can be accessed through memory controllers. The dedicat-

ed memory of another processor can also be accessed using high

speed Intel Quickpath Interconnect which links all processors.

This technology provides high bandwidth, low latency and en-

hances application performance and reliability for a wide range

of mult i-core systems.

3 MECHANISM DESIGNED

We are here concentrating on all the aspects affecting perfor-

mance of the processor. The mechanis m proposed here will try to

optimize the performance with margina l tradeoff between speed

and efficiency of the processor. After analyzing the whole scena-

rio the areas which need to be improved are L1 cache; processor

to processor communication; Interconnections; errors crept in due

to non reliable fabrication technologies; errors due to malfunc-

tioning of non redundant logic; processor to memory interaction;

Clock frequency allotment and obtaining parallelis m in applica-

tion program. While solving these issues we have take into con-

sideration speed, accuracy, cost and efficiency of p rocessor they

all need to be optimized. For that work has to be done in every

sphere of operation of processor at both hardware and software

level.

A. I

Improvement at Hardware level

Here we have to improve the existing hardware and fabricate new

one on chip if necessary. We have multiple cores on single ch ip

out of which certain are idle. We can utilize these cores which

will in turn reduce need of extra hardware. These cores can be

used as cache cores, checker core and communicator core. Cache

core will act as a data cache for the main computation core it will

just behave as L2 data cache fo r the computation core. Checker

core will be equipped with a software program that will be capa-

ble of seeking erroneous non redundant logic in the other cores

and replacing that erroneous hardware by a software module giv-

ing the same result. So here we will be salvaging at micro arch i-

tectural level rather at architectural level. While the communica-

tion core will act as controller for computation core to cache

cores communication it will be equipped with a software program

which would give it a self learn ing capability just like routers in

the networking so it will intelligent enough to access right cache

core for seeking data to reduce hit ratio. And moreover the inter-

connections between these cores can be deployed through Intel’s

quick path interconnect which will speed up the whole process

the type of interconnect deployed will be decided by the rate at

which data need to be transferred that is on the basis of applica-

tion. And levels of cache need to be aggravated size need not be

increased much but the division of cache on the bas is of the type

of instruction it would be storing that is dependable and unde-

pendable execution instruction will further enhance the processor

performance as hit rat io will improve this need to be managed

through software. Frequency allocation for clock should be done

on demand basis the idle processor should be operated at low

frequency to reduce power requirement.

B. I

Improvement at Software level

Improvement at software level is more important as we reduce

extra hardware requirement which will reduce cost. First the im-

provement needs to be done at L1 cache in computation core it

should managed properly div ision of cache into multip le levels

can be done through software managed program which will store

frequent instruction opcodes on basis of the their type and opera-

tion they perform which will reduce the seeking time and thus hit

ratio will improve too. This can be done by observing or monitor-

ing control signal status during fetching cycle. Then if data cache

miss is found then the cache core can be accessed. Multiple cache

cores can be used so that if one is busy then other can be referred.

Then the communication amongst them can be improved through

Intel’s quick path interconnect. Software instruction opcode

fetcher can be implemented and the corresponding control signals

generated can be buffered for each instruction.

The overall processor with multip le cores with these improve-

ments can be seen as below in figure 3 which shows conceptual

overview of the whole scenario

Figure 3: Conceptual overview

A. Checker core

It will be equipped with a software module which will look for

any discrepancies in the functioning of the core and will identify

the malfunctioning of core by dynamic verification method which

analysis certain parameters on which performance of the core

depends. Basic algorithm is shown below

Step1: Depending upon the core architecture n application deter-

mine parameters for analyzing performance

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Step 2: Then do periodic analysis of these parameters to look for

any discrepancy

Step3: If any discrepancy found then execute the corresponding

module

Step4: go back to step 2

B. Multiple cores

It comprises of multip le cores which are equipped with software

that enable them to be used as cache core which will basically

store data. Here an id le core can be used as a data cache. The

advantage of having mult iple data cache is that if the core being

used as a data cache has some urgent work to do or has encoun-

tered an interrupt it could transfer its data to neighboring core

through controller n interface in between so as the computation

core has access to that data throughout. And moreover perfor-

mance of the core is the effected. Basic algorithm is shown below

Step1: Cache core on encountering an interrupt moves to step 3

Step2: Execute L2 cache software module indefinitely

Step3: Transfer the data to neighbor cache up to down and to in-

terface and controller down to up so that computation cache has

access to data mean while

Step4: Execute ISR

C. Computation core

The core which does computation is called computation core it

will be equipped with an improved L1 instruction cache along

with L2 data cache. The software will generate L1 cache where

instruction opcode will be stored as per its type in order to im-

prove cache hit rat io and L2 data cache will also be maintained

their itself to reduce core to core communication if possible. Here

an instruction prefetcher can be employed which prefetch all op-

codes of program to increase parallelis m. Basic algorithm is

shown below

Step1: Divide the L1 cache into mult iple levels

Step2: Store instruction opcodes in respective cache

Step3: Access the right cache depending on its type

D. Controller and Interfaces

It aids in computation to cache core communication so as to

speed up the processor it will be equipped with a fu lly fledged

software module, a processor to run that module and a s mall in-

built memory.

Step1: Send control messages

Step2: Monitor core Cache access request

Step3: Give Direct cache core access to computation core and If

interrupt comes on busy pin move to next step

Step4: Move data from cache to its temporary memory to give

access to computation core n mean while t ransfer the data to new

cache core

Step5: Move back to step2

E. Global Memory

Here it is the memory shared amongst all the cores which is ac-

cessed via the controller or through dedicated lines not shown in

figure 3.

F. Frequency scheduler

It will assign frequency or clock signal to the cores on the basis

of status of the core that is if needs to work at bulk of data at a

time or needs to speed up higher clock will be g iven and vice

versa. Basic algorithm is shown below

Step1: Determine the core demand

Step2: Switch its clock source

Step3: Goto step1

4 CONCLUSION

Multicore arch itectures are focused on improving the perfor-

mance of the processor however their overall performance and

speed depends on the thread level parallelis m, technique of fabri-

cation, fault detection and recovery, the type of interconnections

deployed, cache maintenance algorithms etc. Here in this paper

we tried to cover all aspects over which the performance depends

and suggested requisite steps which need to be carried out in o r-

der to enhance the speed, reduce power consumption, utilizing

the available resources at sake to full and to manage mult iple

cores in best possible way. The concept of multip le cache cores,

controller and interface, checker core and Quick path intercon-

nect will optimize the overall scenario. Future work comprises of

implementing in on simulator to analyze by what factor perfor-

mance improves and then burning it on chip and analyzing real

time constraints.

.

5 REFERENCES

[1] Y

Yosuke Mori, Kenji Kise, “The Cache-Core Architec-

ture to Enhance the Memory Performance on Multi-

Core Processors”, International Conference on Parallel

and Distributed Computing, Applications and Technolo-

gies, 2009.

[2] A

Arijit Biswas et. al., “Architectures for Online Error De-

tection and Recovery in Multicore Processors”, EDAA,

2011

[3] N

Naveh, E. Rotem, A. Mendelson, S. Gochman, R. Cha-

bukswar, K. Krishnan, and A. Kumar, "Power and

Thermal Management in the Intel Core Duo processor,"

Intel Technology Journal, vol. 10, no. 2, pp. 109-122,

2006.

[4] X. Zhang, K. Shen, S. Dwarkadas, and R. Zhong, "An

Evaluation of Per-Chip Nonuniform Frequency Scaling

on Multicores," in Proc. o f USENlXATC, 2010.

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[5] "Intel Turbo Boost Technology in Intel Core Microarc-

hitecture (Nehalem) Based Processors," White paper, In-

tel, November 2008.

[6] W. Kim, D. Brooks, and G.-Y. Wei, "A Fully-Integrated

3- Level DC/DC Converter for Nanosecond-Scale DV S

with Fast Shunt Regulation," in Proc. of ISSCC, 2011.

[7] Xinghui Zhao and Nadeem lamali, Fine-Grained Per-

Core Frequency Scheduling for Power Efficient Multi-

core Execution, Proceedings of the 2nd IEEE Interna-

tional Green Computing Conference (IGCC 2011, pp:1--

8, July 2011.

[8] An Introduction to the Intel QuickPath Interconnect,

White Paper,Intel, January,2009.

